
C h a p t e r 1 1
E x t r a R e s o u r c e s

Additional Resources

1.	 “Small Basic Reference Documentation: GraphicsWindow Object”
(http://tiny.cc/graphicswindow/): Learn about all the properties, events,
and methods of the GraphicsWindow object.

2.	 “Small Basic Reference Documentation: Shapes Object” (http://tiny​
.cc/shapesobject/): Review the Shapes object to become familiar with its
methods!

3.	 “Special Keys: Alt & F10” (http://tiny.cc/altf10/): Learn how alt and F10
are treated differently in Windows.

4.	 “More About MouseMove” (http://tiny.cc/mousemove/): Dig deeper to dis-
cover how the MouseMove event works.

5.	 “Turtle Game Updates” (http://tiny.cc/turtlegame/): Share your updates
to the Gold Rush turtle game!

2 Chapter 11 Extra Resources

Review Questions

1.	 What is an event?

2.	 What is the difference between procedural programming and event-
driven programming? What are examples of each?

3.	 What are the six events that the GraphicsWindow can check for?

4.	 What is an event handler?

5.	 How do you register an event handler?

6.	 What does Small Basic save in the LastKey property when the user
presses the 4 key?

7.	 What does the following code do?

Timer.Interval = 2000

8.	 What should you look out for when you’re using the MouseDown event?

9.	 BONUS: What is a typewriter?

Practice Exercises

1.	 What does the following program do? Write the program and run it.
How does the Animate() method work?

GraphicsWindow.MouseDown = OnMouseDown
circle = Shapes.AddEllipse(50, 50)
Sub OnMouseDown
 x = GraphicsWindow.MouseX
 y = GraphicsWindow.MouseY
 Shapes.Animate(circle, x, y, 500)
EndSub

2.	 Run this program:

GraphicsWindow.MouseDown = OnMouseDown
GraphicsWindow.MouseUp = OnMouseUp

Sub OnMouseDown
 Sound.PlayClickAndWait()
EndSub

Sub OnMouseUp
 Sound.PlayBellRingAndWait()
EndSub

a.	 Click and release the mouse over the graphics window and describe
what happens.

Chapter 11 Extra Resources 3

b.	 Click and hold the mouse over the graphics window, and then move
the cursor outside the graphics window before releasing the button.
Describe what happens.

c.	 What does the outcome of parts a and b tell you about the MouseDown
and MouseUp events?

3.	 The following simple program tests the typing speed of a user. The
program displays ten random letters in the graphics window (one at a
time) and it times how long the user takes to click the matching letter
on the keyboard. Run the program several times, and then read the
source code to understand how it works. Think of some ways to improve
it, and try to implement them.

' Speed.sb
' Tests your typing speed

GraphicsWindow.Title = "Speed Test"
GraphicsWindow.Width = 300
GraphicsWindow.Height = 300
GraphicsWindow.CanResize = "False"

' Creates a text shape to show the random letters
GraphicsWindow.FontSize = 80
txtID = Shapes.AddText("")
Shapes.Move(txtID, 120, 100)

' Creates a text shape to show the score (total time)
GraphicsWindow.FontSize = 16
scoreID = Shapes.AddText("Total time: ")
Shapes.Move(scoreID, 5, 270)

GraphicsWindow.ShowMessage("Click to Start", "Start")

GraphicsWindow.KeyDown = onKeyDown

t1 = Clock.ElapsedMilliseconds ' Start time
charNum = 1 ' Shows only 10 characters

ShowLetter()

Sub ShowLetter
 code = 64 + Math.GetRandomNumber(26)
 char = Text.GetCharacter(code)
 Shapes.SetText(txtID, char)
EndSub

Sub onKeyDown
 If (charNum <= 10) Then
 If (GraphicsWindow.LastKey = char) Then ' Matches
 Sound.PlayClick()
 If (charNum = 10) Then
 ShowElapsedTime()

4 Chapter 11 Extra Resources

 Else
 ShowLetter()
 EndIf
 charNum = charNum + 1
 EndIf
 EndIf
EndSub

Sub ShowElapsedTime
 totTime = Clock.ElapsedMilliseconds - t1
 totTime = totTime / 1000
 msg = "Total time: " + totTime + " sec."
 Shapes.SetText(scoreID, msg)
EndSub

4.	 Write a game in which the player is locked in a cage with a monster (see
the following figure).

The player is represented by the square shape and the monster
by the triangle. The player uses the arrow keys to move. After each
move, the monster moves toward the player. The longer the player
can outwit the monster, the higher the player’s score!

a.	 Open the file MonsterChase_Incomplete.sb from this chapter’s folder.
You should see the following code. You’ll add the missing sections.

' MonsterChase_Incomplete.sb
' Try to escape from a monster

GraphicsWindow.Title = "Monster Chase"
GraphicsWindow.Width = 250
GraphicsWindow.Height = 250
GraphicsWindow.CanResize = 0

Grid() ' Draws a 5x5 grid
P = Shapes.AddRectangle(40, 40) ' Player's shape
M = Shapes.AddTriangle(0, 0, 40, 0, 20, 40) ' Monster's shape

GraphicsWindow.KeyDown = OnKeyDown

Chapter 11 Extra Resources 5

NewGame()

Sub NewGame
 ' [TO DO]
EndSub

Sub OnKeyDown
 ' [TO DO]
EndSub

Sub Grid
 For I = 1 To 5
 For J = 1 To 5
 X0 = (J - 1) * 50
 Y0 = (I - 1) * 50
 GraphicsWindow.DrawRectangle(X0, Y0, 50, 50)
 EndFor
 EndFor
EndSub

b.	 Add the following NewGame() subroutine where the first [TO DO]
comment is. Then add the Move() subroutine after the NewGame()
subroutine.

Sub NewGame
 rp = 5 ' Player's row
 cp = 5 ' Player's column
 rm = 1 ' Monster's row
 cm = 1 ' Monster's column
 count = 0 ' Number of player's movements

 Move() ' Positions player and monster on the grid
EndSub
Sub Move
 Shapes.Move(P, (cp - 1) * 50 + 5, (rp - 1) * 50 + 5)
 Shapes.Move(M, (cm - 1) * 50 + 5, (rm - 1) * 50 + 5)
EndSub

When you run the game now, you’ll see the monster’s triangle in
the upper-left corner and the player’s square in the lower-right corner.

c.	 Add the following OnKeyDown() subroutine where the second [TO DO]
comment is. How is the program stopping the player and monster
from moving out of the grid?

' Checks whether the player's move is within the grid
' If the player's move is valid, it processes the move
Sub OnKeyDown
 newR = rp ' New row
 newC = cp ' New column
 key = GraphicsWindow.LastKey
 If (key = "Up" And newR > 1) Then
 newR = newR - 1
 ElseIf (key = "Down" And newR < 5) Then

6 Chapter 11 Extra Resources

 newR = newR + 1
 ElseIf (key = "Left" And newC > 1) Then
 newC = newC - 1
 ElseIf (key = "Right" and newC < 5) Then
 newC = newC + 1
 EndIf

 If (newR <> rp Or newC <> cp) Then ' Player's position changed
 count = count + 1 ' Increases move count
 rp = newR ' Sets new values
 cp = newC
 Process()
 EndIf
EndSub

d.	 Add the following Process() subroutine to the end of the program.
How is the program telling the user when the game ends? What
does the program do when the game ends?

' Processes player's move
' Moves player and then moves monster
Sub Process
 done = 0 ' Assumes the player is not caught by the monster
 Move() ' Updates the positions in the GUI
 If (rp = rm And cp = cm) Then ' Player moves to the monster's grid
 done = 1 ' Game over
 Else ' Player moves and avoids monster
 MoveMonster() ' Determines monster's new position (row and column)
 Move() ' Updates positions in GUI
 If (rp = rm And cp = cm) Then ' If monster hits player
 done = 1 ' Game over
 EndIf
 EndIf

 If (done = 1) Then
 GraphicsWindow.ShowMessage("Game over: " + count, "Game over")
 NewGame()
 EndIf
EndSub

e.	 Add the following MoveMonster() subroutine to the end of the pro-
gram. Explain how the monster decides where to move.

Sub MoveMonster
 If (rm = rp And cm < cp) Then ' Player is east of monster
 D = 1 ' Direction = East
 ElseIf (rm > rp And cm < cp) Then ' Player is northeast of monster
 D = 2 ' Direction = Northeast
 ElseIf (rm > rp And cm = cp) Then ' Player is directly north of monster
 D = 3 ' Direction = North
 ElseIf (rm > rp And cm > cp) Then ' Player is northwest of monster
 D = 4 ' Direction = Northwest
 ElseIf (rm = rp And cm > cp) Then ' Player is west of the monster

Chapter 11 Extra Resources 7

 D = 5 ' Direction = West
 ElseIf (rm < rp And cm > cp) Then ' Player is southwest of monster
 D = 6 ' Direction = Southwest
 ElseIf (rm > rp And cm = cp) Then ' Player is south of monster
 D = 7 ' Dircetion = South
 Else ' Player is southeast of monster
 D = 8 ' Direction = Southeast
 EndIf

 RandDir:
 D = D + (Math.GetRandomNumber(3) - 2) ' Adds 1, 0, or -1 to D
 If (D < 1) Then ' Makes sure the direction is still between 1 and 8
 D = 1
 ElseIf (D > 8) Then
 D = 8
 EndIf

 ' Moves
 newR = rm
 newC = cm

 If ((D = 2 Or D = 3 Or D = 4) And (newR > 1)) Then ' Moves up
 newR = newR - 1
 ElseIf ((D = 6 Or D = 7 Or D = 8) And (newR < 5)) Then ' Moves down
 newR = newR + 1
 EndIf

 If ((D = 4 Or D = 5 Or D = 6) And (newC > 1)) Then ' Moves left
 newC = newC - 1
 ElseIf ((D = 1 or D = 2 Or D = 8) And (newC < 5)) Then ' Moves right
 newC = newC + 1
 EndIf

 If (newR = rm And newC = cm) Then ' Monster doesn’t move
 Goto RandDir
 EndIf

 rm = newR ' Set monster's new position (row and column)
 cm = newC
EndSub

5.	 Write a program that lets the user draw in the graphics window using
the arrow keys. The cursor should start in the middle of the graphics
window. When the user presses an arrow key, the cursor should move in
that direction and leave a trail. Also, let the user change the pen’s color
by pressing the spacebar. (Hint: use the Turtle object.)

