
E x t r a Re s o u r c e s S o l u t i o n s

This document contains the solutions to the problems
listed in the extra resources.

Chapter 1

Review Questions
Q1-1: A computer’s hardware is everything you can touch on your com-
puter—all the interconnected electronic parts. The software is the pro-
grams that tell the computer (the hardware) what to do.

Q1-2: Computer programming is the process of writing or editing com-
puter programs.

Q1-3: Machine language is the sequence of 1s and 0s that computers
interpret and execute.

Q1-4: Microsoft Small Basic is a free programming language that
Microsoft created for anyone who wants to learn programming.

2 Extra Resources Solutions

Q1-5: Small Basic is simple, fun, social, and gradual.

Q1-6: You can write all kinds of applications with Small Basic, includ-
ing games, simulations, animations, and more.

Q1-7: Syntax rules are the grammatical rules of a programming
language.

Q1-8: Syntax errors occur when a programmer breaks Small Basic’s
grammatical rules.

Q1-9: TextWindow and GraphicsWindow are examples of objects.

Q1-10: The integrated development environment (IDE) is the applica-
tion you’ll use to write your Small Basic programs.

Q1-11: The compiler checks your program for errors and then converts
the program into an executable file that your computer runs.

Q1-12: Syntax coloring refers to the use of different colors to mark the
different parts of the code. IntelliSense (or intelligence sense) refers to
the editor’s ability to analyze what you’re typing and autocomplete the
code for you.

Q1-13: Keywords are words that have a special meaning in Small Basic.
Some examples are For and While, which you use to write loops, and If
and Then, which you use to write conditional expressions.

Q1-14: You can give your friends the .exe and the .dll files created by the
Small Basic compiler. You can also click Publish on the toolbar, and
Small Basic will publish your program to the Web so your friends can
play your game or use your app online and see your code.

Chapter 2

Review Questions
Q2-1: An object is a bundle of properties and methods that does a spe-
cific job. You call a method of an object to have the object perform a
certain task.

Q2-2: Small Basic is case insensitive, which means that it doesn’t matter
if your code is written in uppercase or lowercase letters.

Q2-3: The concatenation operator (the + sign) glues (or joins) two
strings together.

Q2-4: Characters of a string must be enclosed in double quotes.

Q2-5: You should add comments to your code to explain its tricky parts.

Q2-6: The statement uses single quotes (') instead of a double quotes (").

Extra Resources Solutions 3

Q2-7: The Write() method and the WriteLine() method both display data
to the text window, but the Write() method doesn’t move the cursor to
the next line after it displays the string.

Q2-8: The computer executes the statements of a program in order,
from top to bottom.

Q2-9: Bugs are logic errors in a program, and debugging is the process
we use for finding and fixing these bugs.

Practice Exercises
P2-1: The output of the program is shown in the following comments:

TextWindow.WriteLine("1+2=" + 1 + 2) ' Displays: 1+2=12
TextWindow.WriteLine("1+2=" + (1 + 2)) ' Displays: 1+2=3

Small Basic evaluates the argument of WriteLine() from left to right.
In the first statement, it first sees a plus sign with two operands: "1+2="
(a string) and 1 (a number). Because the left operand is not a number,
Small Basic treats the plus sign as a concatenation operator and pro-
duces "1+2=1". It then looks at the second plus sign. Again, because the
left operand (now "1+2=1") is a string andnot a number, the second plus
sign is also treated as a concatenation operator and the final results is
"1+2=12".

In the second statement, parentheses take precedence. Small Basic
first adds the numbers 1 and 2 (between parentheses) to get 3, and
then glues this number to the left operand to get "1+2=3".

P2-2: See the file Prob_2_2.sb.

P2-3: See the file Prob_2_3.sb.

P2-4: The WriteLine() method is misspelled. This is called a syntax
error. The program should look like this:

TextWindow.WriteLine("I Goofed")

Chapter 3

Review Questions
Q3-1: Use the DrawLine() method when you want to draw a line between
two points in the graphics window.

Q3-2: The origin of the coordinate system, point (0, 0), is in the upper-
left corner of the graphics window.

Q3-3: To draw a cross in the graphics window, call the DrawLine()
method two times.

4 Extra Resources Solutions

Q3-4: To change thickness and color of the lines drawn by the DrawLine()
method, use the PenWidth and PenColor properties of GraphicsWindow,
respectively.

Q3-5: The DrawTriangle() method draws the outline (or border) of a
triangle, whereas the FillTriangle() methods draws a triangle filled with
a color.

Q3-6: You can change the fill color by setting the BrushColor property of
the GraphicsWindow object.

Q3-7: To draw a circle, you can use DrawEllipse() or FillEllipse(). Both
methods take the upper-left coordinate of the ellipse, its width, and
its height as arguments. To draw a circle, set the width and the height
arguments to the same value.

Q3-8: The font and color of the text drawn by DrawText() are set by the
FontName, FontSize, FontBold, FontItalic, and BrushColor properties of the
GraphicsWindow object.

Q3-9: The DrawBoundText() method allows you to fit the drawn text to a
certain width. You can’t do that with the DrawText() method.

Q3-10: To draw an image on the graphics window, you can use the
DrawImage() or the DrawResizedImage() methods. The latter lets you set the
size of the image.

Practice Exercises
P3-1: See the file Prob_3_1.sb.

P3-2: See the file Prob_3_2.sb.

P3-3: See the file Prob_3_3.sb.

P3-4: See the file Prob_3_4.sb.

P3-5: See the file Prob_3_5.sb.

P3-6: See the file Prob_3_6.sb.

P3-7: See the file Prob_3_7.sb.

P3-8: See the file Prob_3_8.sb.

P3-9: See the file Prob_3_9.sb.

P3-10: See the file Prob_3_10.sb.

P3-11: See the file Prob_3_11.sb.

Extra Resources Solutions 5

Chapter 4

Review Questions
Q4-1: A variable is used to store a value (like numbers or text) in your
program.

Q4-2: Variable names can include letters (lowercase and uppercase),
digits (0 to 9), and the underscore character (_).

Q4-3: The name of a variable must start with a letter or underscore. It
can’t start with a number.

Q4-4: Using meaningful variable names makes your program easier to
understand and maintain.

Q4-5: Yes. The variables grade and GRADE are the same because Small
Basic is case insensitive.

Q4-6: The a. statement, x = 10, is legal, whereas the b. statement, 5 = x,
is not. You can’t have a number to the left of the assignment operator
(the equal sign).

Practice Exercises
P4-1: The program displays the following output:

100 and one dalmatians

P4-2: The program displays the following output:

4/22/2017 is the day I rocked Small Basic.

The date will be different based on when you run the program.

P4-3: Here is the output of the three expressions:

a.	 1

b.	 2.5

c.	 4

P4-4: The program’s output is shown in the comments:

x = 12
y = x / 2 + 2 ' x = 12 y = 8
x = y / 2 + 2 ' x = 6 y = 8
y = x / 2 + 1 ' x = 6 y = 4

6 Extra Resources Solutions

P4-5: Here’s how you write these expressions in Small Basic:

a.	 y = (8 + (4 * 5)) / ((4 * 2) - 6)

b.	 y = ((3 * 3 * 3 * 3) + 9) / ((5 * 4) + 10)

P4-6: The third statement (b / a = x) is wrong. It should be x = b / a.

P4-7: The third statement is wrong. It should be taxAmount = price *
taxPrcnt

P4-8: Answers will vary. See the file Comedian.sb.

P4-9: The program uses a temporary variable, temp, to swap the values
of the variables a and b. First, it stores the current value of a in temp. It
then moves the current value of b into a, and moves the value of temp
(the original a value) into b. See the file Swap.sb.

P4-10: See the file MoonWeight.sb.

P4-11: See the file RecylcingCampain.sb.

P4-12: See the file Vacation.sb in the folder Prob_4_12.

P4-13: See the file CelsiusToFahrenheit.sb in the folder Prob_4_13.

Chapter 5

Review Questions
Q5-1: To show the turtle, use Turtle.Show().

Q5-2: To change the turtle’s orientation, use the Angle property or the
Turn() method.

Q5-3: To move the turtle without changing its current direction (or
heading), uses the X and Y properties of the Turtle object.

Q5-4: The Angle property lets you set the turtle’s angle to a specific
(absolute) value. The Turn() method lets you rotate the turtle relative
to its current direction.

Q5-5: You might want to lift the turtle’s pen if you need to move the
turtle without leaving a trace. You do that with the PenUp() method.

Q5-6: You change the turtle’s speed using the Speed property. The pos-
sible values are 1 to 10.

Q5-7: You use a For loop when you want to repeat a set of statements a
certain number of times.

Extra Resources Solutions 7

Q5-8: To make a For loop repeat eight times, you write something
like this:

For I = 1 To 8

Q5-9: To close the body of a For loop, use the EndFor keyword.

Practice Exercises
P5-1: See the file Prob_5_1.sb.

P5-2: See the file Prob_5_2.sb.

P5-3: See the file Prob_5_3.sb.

P5-4: See the file Prob_5_4.sb.

P5-5: See the file Prob_5_5.sb.

P5-6: See the file Prob_5_6.sb.

Chapter 6

Review Questions
Q6-1: To get information from the keyboard, you can use the TextWindow
object’s Read() or ReadNumber() methods. Both methods show a flash-
ing cursor and wait for the user to type input and press enter, but
ReadNumber() will accept only a number as input.

Q6-2: When the program runs the Read() or ReadNumber() methods, a
flashing cursor appears in the text window to show that the computer
is waiting for the user to type something on the keyboard.

Q6-3: The Read() method does not return until you press enter.

Q6-4: A prompt is a message that tells the user what to input.

Q6-5: When Small Basic runs this statement, it waits for the user
to enter a number and press enter. When the user presses enter,
the program grabs the user input and assigns it to the ans variable.
The program then continues with the statement after the ReadNumber()
method.

Q6-6: Because you want to read a name (a string), you need to use the
Read() method.

8 Extra Resources Solutions

Practice Exercises
P6-1: See the file Prob_6_1.sb.

P6-2: See the file Prob_6_2.sb.

P6-3: See the file Prob_6_3.sb.

P6-4: See the file Prob_6_4.sb.

P6-5: See the file Prob_6_5.sb.

P6-6: See the file Prob_6_6.sb.

P6-7: See the file Prob_6_7.sb.

P6-8: See the file Prob_6_8.sb.

P6-9: See the file Prob_6_9.sb.

P6-10: See the file Prob_6_10.sb.

Chapter 7

Review Questions
Q7-1: The Power() method raises a base number (x) to a specified power
(y). That is, Math.Power(x, y) returns x raised to the yth power.

Q7-2: The Round() method rounds to the nearest even integer. For
example, 32.233 will be rounded to 32, and 32.566 will be rounded to
33. The Floor() method returns the largest integer that is less than or
equal to the argument (it rounds down the integer value). For example,
32.233 and 32.999 will return 32. The Ceiling() method, on the other
hand, returns the smallest integer that is greater than or equal to the
argument (it rounds up the integer value). For example, 32.233 will
return 33.

Q7-3: First, Small Basic evaluates the inner Min() method and gets 27.
It then evaluates the outer Min() method (with 27 and 8 as arguments),
and returns 8.

Q7-4: The following inclusive statement returns a random number
between 10 and 20:

ans = 9 + Math.GetRandomNumber(11)

Practice Exercises
P7-1: The program prompts the user to enter an angle in degrees and
assigns their input to the deg variable. It then converts this input to radi-
ans (because the Sin() method expects its argument to be in radians),

Extra Resources Solutions 9

and assigns the result to the rad variable. Next it passes rad to the Sin()
method and assigns the returned sine to ans. The last statement displays
the answer. See the file SineCalc.sb.

P7-2: See the file DaysToMin.sb.

P7-3: See the file Prob_7_3.sb.

P7-4: See the file Prob_7_4.sb.

P7-5: See the file Prob_7_5.sb.

P7-6: See the file Prob_7_6.sb.

P7-7: See the file Prob_7_7.sb.

P7-8: See the file Prob_7_8.sb.

P7-9: See the file Prob_7_9.sb.

P7-10: See the file Prob_7_10.sb.

P7-11: See the file Prob_7_11.sb.

Chapter 8

Review Questions
Q8-1: You read the statement like this: “If num is less than or equal to
zero, then. . . ”

Q8-2: A relational operator (or comparison operator) checks the rela-
tionship between two values or expressions.

Q8-3: A Boolean value can be true or false.

Q8-4: The Goto statement lets you jump to a labeled line in your
program.

Q8-5: The condition is: score >= 95. The program displays You got an A.
only when this condition is true.

Q8-6: Use the If statement when you need to perform an action only
when a condition is true. Use the If/Else statement to take one action
when the condition is true and another action when the condition is
false.

Q8-7: The exclamation mark (!) is not a conditional operator.

Q8-8: You use the Goto statement when you want to skip some state-
ments and move (forward or backward) to a labeled line in your
program.

10 Extra Resources Solutions

Q8-9: When num = 10, the program displays the following output:

10 is even.
10 is odd.

When num = 15, the program displays the following output:

15 is odd.

The problem is that the last statement is executed whether the con-
dition is true or false. To fix the problem, you need to use an If/Else
statement, like this:

If (Math.Remainder(num, 2) = 0) Then
 TextWindow.WriteLine(num + " is even.")
Else
 TextWindow.WriteLine(num + " is odd.")
EndIf

Q8-10: If x is 10, the condition x = 20 is false, and the statement x = 30
is skipped. Therefore, the value of x will remain 10 after the code is
executed.

Q8-11: The program counts up from two (in increments of 2) in an
endless loop. That is, it displays 2, 4, 6, 8, and so on, forever.

Practice Exercises
P8-1: See the file Prob_8_1.sb. If the user enters a number that is greater
than or equal to 500, the program displays, This will take some time.
Please wait..., sleeps for two seconds, and then displays Continuing....
But if the user enters a number less than 500, the program only dis-
plays, Continuing....

P8-2: See the file Prob_8_2.sb.

P8-3: See the file Prob_8_3.sb.

P8-4: See the file Prob_8_4.sb.

P8-5: See the file Prob_8_5.sb.

P8-6: See the file Prob_8_6.sb.

P8-7: See the file Prob_8_7.sb.

P8-8: See the file Prob_8_8.sb.

P8-9: See the file Prob_8_9.sb.

P8-10: See the file Prob_8_10.sb.

P8-11: Answers will vary. See the file AddTutor.sb.

Extra Resources Solutions 11

P8-12: Answers will vary. See the file Gamble.sb.

P8-13: See the file Prob_8_13.sb.

P8-14: See the file Prob_8_14.sb.

Chapter 9

Review Questions
Q9-1: You use the If/ElseIf ladder when you want to create a chain of
If statements. The program checks each test condition in the ladder in
order. As soon as it finds a true condition, it runs the statement(s) asso-
ciated with that condition and moves down to the statement after the
EndIf, skipping the rest of the ladder.

Q9-2: The operators And and Or are logical operators (also called
Boolean operators) used in compound conditions. For a compound
condition using And to be true, both expressions must be true. For a
compound condition using Or to be true, only one of the expression
must be true.

Q9-3: True. The And operator has higher precedence than the Or
operator.

Q9-4: True. Enclosing the logical expressions in parentheses can
change the order of evaluation in an If statement.

Q9-5: The code puts the Else statement before the ElseIf statement. In
an If/ElseIf ladder, the Else statement should be the last condition (the
default case).

Q9-6: When score is 60, the first condition is false and the second con-
dition is true. The program displays Yellow.

Q9-7: When age is 15 or 40, the program displays Eligible for discount.
When age is 30, the program displays Pay full price.

Q9-8: The following If statement sets the variable result to 1 when the
variable answer has the value "y" or the value "Y":

If ((answer = "y") Or (answer = "Y")) Then
 result = 1
EndIf

Q9-9: The following If statement checks whether score is between 90
and 100 (inclusive) and displays the message Invalid if it isn’t:

If ((score < 90) Or (score > 100)) Then
 TextWindow.WriteLine("Invalid")
EndIf

12 Extra Resources Solutions

Q9-10: The statement mistakenly uses the And operator instead of Or.
Here is the correct check:

If ((score < 0) Or (score > 100)) Then

Q9-11: The statement mistakenly uses the Or operator instead of And.
Here is the correct check:

If ((score >= 0) And (score <= 100)) Then

Practice Exercises
P9-1: Yes. The two code blocks do the same thing. Consider the second
code block shown here:

If (x <= 10) Then
 y = 5
ElseIf (x > 10 And x <= 20) Then
 y = 20
EndIf

Here, if the first condition is false, x is greater than 10. This makes
the first check in the ElseIf statement (x > 10) redundant. Therefore,
the ElseIf statement can be written the same as in the first code block:

ElseIf (x <= 20) Then

P9-2: The results of these expressions are as follows:

a.	 False

b.	 True

c.	 True

d.	 False

P9-3: The following If statement sets y to 10 if the value stored in x is
between 0 and 100 or less than –20.

If ((x > 0 And x < 100) Or (x < -20)) Then
 y = 10
EndIf

P9-4: The results of these expressions are as follows:

a.	 True

b.	 True

c.	 True

d.	 True

Extra Resources Solutions 13

P9-5: You want to write an If statement that sets x to 10 if y is greater
than 50 or z is greater than 100, but not both. That is, the If statement
sets x to 10 if either of the following two cases is true:

a.	 y > 50 And z <= 100

b.	 y <= 50 And z > 100

This is how you would write the If statement:

If ((y > 50 And z <= 100) Or (y <= 50 And z > 100)) Then
 x = 10
EndIf

P9-6: See the file Prob_9_6.sb.

P9-7: Small Basic first evaluates the compound expression Y > 6 Or X
< 0 because it is enclosed in parentheses. It then uses the result as the
right operand of the And operator. If you remove the parentheses, Small
Basic will first evaluate X < 5 And Y > 6, because And has a higher priority
than Or, and then use the result as the left operand of the Or.

P9-8: See the file Prob_9_8.sb.

P9-9: The solution is left as a challenge for the reader.

P9-10: See the file Prob_9_10.sb.

P9-11: See the file Prob_9_11.sb.

P9-12: See the file Prob_9_12.sb.

P9-13: The solution is left as a challenge for the reader.

P9-14: See the file Prob_9_14.sb.

Chapter 10

Review Questions
Q10-1: Subroutines allow you to break your program into smaller, more
manageable pieces. They also allow you to reuse your code (you don’t
have to write the same code over and over again).

Q10-2: A subroutine’s definition starts with the Sub keyword followed by
the subroutine’s name (without parentheses). An example subroutine
definition (the first line to start a subroutine) is Sub Submarine. The sub-
routine ends with the EndSub keyword. The statements that make up the
subroutine are sandwiched between the Sub and EndSub keywords. To call
a subroutine, you enter its name followed by parentheses, such as Sub
Submarine().

14 Extra Resources Solutions

Q10-3: To make sure subroutines don’t get too complicated, have each
subroutine do a specific job with a clear name that describes that job. If
a subroutine gets too long, try breaking it up and moving some parts of
it into new subroutines.

Q10-4: The main program is the application’s high-level manager. Its
role is to call the different subroutines and manage the program’s flow.

Q10-5: Data flow between a subroutine and its caller is managed using
variables.

Q10-6: The input variables to a subroutine carry the data the subrou-
tine needs to complete its job.

Q10-7: Working variables are temporary variables that a subroutine
uses to finish its job.

Q10-8: The output variables of a subroutine hold the values that the
subroutine needs to return to the main program when the subroutine
is called.

Q10-9: Variables in Small Basic are global—they can be defined and
accessed from any place in your program.

Q10-10: Recursion is when a subroutine calls itself.

Practice Exercises
P10-1: The program prompts Mickey to enter the number of
quarts, and assigns the input to the variable quart. It then calls the
QuartToLiter() subroutine, which converts the quarts to liters, and saves
the result in the variable liter. The program then displays the number
of quarts and the equivalent number of liters.

P10-2: See the file Prob_10_2.sb.

P10-3: See the file TriArea.sb.

P10-4: See the file Prob_10_4.sb.

P10-5: See the file Prob_10_5.sb.

P10-6: See the file Prob_10_6.sb.

P10-7: See the file Prob_10_7.sb.

P10-8: See the file Prob_10_8.sb.

P10-9: See the file Prob_10_9.sb.

P10-10: See the file Prob_10_10.sb.

P10-11: See the file TriangleArea.sb in the Prob_10_11 folder.

P10-12: See the file AreaCalculator.sb in the Prob_10_12 folder.

P10-13: PerimCalc_Incomplete.sb is provided for the coding framework.
The final solution is left as a challenge for the reader.

Extra Resources Solutions 15

Chapter 11

Review Questions
Q11-1: An event is a signal that’s raised in response to an action, such
as moving or clicking the mouse, clicking a button, typing on the key-
board, having a timer expire, and so on.

Q11-2: In procedural programming, you break your problem down into
several subroutines and call these subroutines in a certain order that
gives you the desired result. In event-driven programming, your pro-
grams listen and respond to events raised by the operating system.

Q11-3: The GraphicsWindow can check for these six events: KeyDown, KeyUp,
MouseDown, MouseUp, MouseMove, and TextInput.

Q11-4: An event handler is a subroutine whose purpose is to handle, or
process, an event.

Q11-5: To register an event handler, you write a statement in the follow-
ing format:

ObjectName.EventName = EventHandlerName

Q11-6: When the user presses the 4 key, LastKey will be set to "D4".

Q11-7: The statement Timer.Interval = 2000 tells the Timer object to raise
the Tick event every 2000 milliseconds (every 2 seconds). This allows
you to program time limits and pauses.

Q11-8: First, the MouseDown event is raised only once (when the left
mouse button is clicked). The x and y mouse positions are saved in
the MouseX and MouseY properties of GraphicsWindow. Second, although a
MouseDown event is usually followed by a MouseUp event, you can’t count on
that. If you click the left mouse button in the graphics window and then
move the cursor outside the graphics window before you release the
button, your application receives only a MouseDown event notification.

Q11-9: Do an Internet search to learn more about the typewriter.

Practice Exercises
P11-1: See the file Prob_11_1.sb. The program animates a circle moving
from its current position to the mouse-click position in 500 millisec-
onds (0.5 seconds).

P11-2: See the file Prob_11_2.sb.

a.	 When you click and release the mouse over the graphics window,
both event handlers are called, and you’ll hear the click and the
bell ring sounds.

16 Extra Resources Solutions

b.	 When you click and hold the mouse over the graphics window, and
then move the cursor outside the graphics window before releasing
the button, you’ll only hear the click. The GraphicsWindow object will
not receive the OnMouseUp event in this case.

c.	 You can’t assume that a MouseUp event always follows a MouseDown
event.

P11-3: See the file Speed.sb.

P11-4: See the file MonsterChase.sb in the folder Prob_11_4.

P11-5: See the file Prob_11_5.sb.

Chapter 12

Review Questions
Q12-1: GUI stands for Graphical User Interface. A GUI application con-
tains buttons, text boxes, graphics, menus, toolbars, and so on.

Q12-2: The following table lists five methods of the Controls object with
a brief description of each method.

Method Description

AddTextBox() Adds a text input box to the graphics window at the
specified position.

AddButton() Adds a button to the graphics window at the specified
position.

GetButtonCaption() Returns the current caption of the specified button.
SetButtonCaption() Sets the caption of the specified button.
GetTextBoxText() Gets the current text of the specified text box.

Q12-3: A text box can hold a single line of text. A multiline text box
can hold multiple lines; it has horizontal and vertical scroll bars that
appear automatically if needed.

Q12-4: When you have multiple buttons, you can tell which button
a user clicked by using the LastClickedButton property of the Controls
object.

Q12-5: Flickr is a photo-sharing website. The Flickr object allows you to
get images from this website and use them in your application.

Practice Exercises
P12-1: See the file Sphinx.sb in the folder Prob_12_1.

P12-2: See the file Cards.sb in the folder Prob_12_2.

P12-3: See the file CountingAnimals.sb in the folder Prob_12_3.

Extra Resources Solutions 17

P12-4: See the file Dice.sb in the folder Prob_12_4.

P12-5: See the file HorseRace.sb in the folder Prob_12_5.

P12-6: See the file Prob_12_6.sb.

Chapter 13

Review Questions
Q13-1: Small Basic supports For loops and While loops.

Q13-2: The general form of the For loop is shown here:

For N = A To B Step C
 Statement(s)
EndFor

In that For loop, N is the loop counter, A is the initial value, B is the
terminal value, and C is the step size.

Q13-3: The set of statements between the For and the EndFor keywords is
called the body of the loop.

Q13-4: When you need to run a set of statements a fixed number of
times, you use a For loop.

Q13-5: If you don’t use the Step keyword in a For statement, the loop
counter’s default step increment is 1.

Q13-6: To write a For loop that counts backward, use a Step size of –1.

Q13-7: The code mistakenly sets Step to 1. It should be –1.

Q13-8: The keyword to end the loop is EndFor (not End).

Q13-9: The Step keyword must appear after the terminal value. This is
the correct form of this loop:

For N = 1 To 10 Step 2
 TextWindow.WriteLine(N)
EndFor

Q13-10: The program finds the sum of 10 numbers entered by the user.
Here is an equivalent version that uses a For loop:

sum = 0
For N = 1 To 10
 TextWindow.Write("Enter a number: ")
 num = TextWindow.ReadNumber()
 sum = sum + num
EndFor
TextWindow.WriteLine(sum)

18 Extra Resources Solutions

Q13-11: A loop within a loop is called a nested loop.

Q13-12: The program displays the numbers 1 and 2 five time (with
each number on its own line).

Practice Exercises
P13-1: The program draws a diamond shape using asterisks (*). See the
file Prob_13_1.sb.

P13-2: See the file Prob_13_2.sb.

P13-3: See the file Prob_13_3.sb.

P13-4: See the file Prob_13_4.sb. The program checks the divisibility of
the number entered by the user (N) by all the numbers (I) from 1 to N.
If N divides by I without a remainder, then I is a factor of N, and the pro-
gram displays it.

P13-5: See the file Prob_13_5.sb.

P13-6: See the file Prob_13_6.sb.

P13-7: See the file Prob_13_7.sb.

P13-8: See the file Prob_13_8.sb.

P13-9: See the file Prob_13_9.sb. The output of the program is shown
here:

12
14
16
10
12
14

P13-10: In the left figure, the K loop is nested inside the J loop.
Therefore, the body of the K loop is executed six times. In the right fig-
ure, the K loop is nested inside the I loop. Therefore, the body of the K
loop is executed only two times.

P13-11: See the file Prob_13_11.sb.

P13-12: See the file Prob_13_12.sb.

P13-13: See the file Prob_13_13.sb.

P13-14: See the file Prob_13_14.sb.

P13-15: See the file Prob_13_15.sb.

P13-16: See the files Prob_13_16a.sb and Prob_13_16b.sb.

Extra Resources Solutions 19

P13-17: See the file Prob_13_17.sb. The program draws a checkered pat-
tern in the graphics window.

P13-18: See the file Prob_13_18.sb. The farmer can buy 5 cows, 1 pig,
and 94 chickens. That is 100 animals for $200.

Chapter 14

Review Questions
Q14-1: The statements enclosed between the While and EndWhile key-
words are called the loop’s body.

Q14-2: When you don’t know the number of repetitions in advance, you
should use a While loop.

Q14-3: If the condition of a While loop is true, the program runs the
statements in the loop’s body and then goes back to check the loop’s
condition again. If the test condition is (or becomes) false, the loop
ends, and the program moves to the next statement after the EndWhile
keyword.

Q14-4: Validating a user’s input means making sure that the data
entered by the user is in a range that your program expects and can
handle.

Q14-5: Infinite loops are useful for games and for tutoring programs.

Q14-6: You can use a Goto statement to instantly exit a deeply nested loop.

Practice Exercises
P14-1: See the file Prob_14_1.sb. The program counts from 0 to 99.

P14-2: See the file Prob_14_2.sb. The program’s output is the following:

9, 81
7, 49
5, 25
3, 9

P14-3: See the file Prob_14_3.sb. The program finds the maximum num-
ber entered by the user. When the user enters 0, the loop ends and the
program displays the maximum number.

P14-4: See the file Prob_14_4.sb. The error is that the statement n = 1
needs to be placed before the While loop (not inside it).

P14-5: See the file Prob_14_5.sb.

20 Extra Resources Solutions

P14-6: This problem is left as a challenge for the reader.

P14-7: See the file Prob_14_7.sb.

P14-8: See the file Prob_14_8.sb.

P14-9: See the file Prob_14_9.sb.

P14-10: See the file EtchASketch.sb.

P14-11: See the file Kaleidoscope.sb.

P14-12: See the file Nim.sb.

P14-13: See the file MemoryTest.sb.

P14-14: See the file MiniGolf.sb.

P14-15: See the file Predict.sb.

Chapter 15

Review Questions
Q15-1: An array is a variable that allows you to store many values under
the same name.

Q15-2: You should use arrays when your program needs to store a large
amount of related data. For example, the average rainfall in the 10 larg-
est US cities could be saved in rainLevel[1] through rainLevel[10], and
the daily sales for the 100 McDonalds in your area could be saved in
sales[1] through sales[100].

Q15-3: An element refers to a single piece of data (or one entry) in an
array.

Q15-4: An indexed array uses an integer index, such as score[1] or
name[3], to access its elements. But the elements of an associative
array are referenced using a string index, such as price["apple"] or
address["John"].

Q15-5: A string initializer is a specially formatted string that lets you
initialize (or assign) the elements of an array in a single statement.

Q15-6: The following statements create an array named score that con-
tains these three numbers: 10, 15, and 20. The index starts at 1.

score[1] = 10
score[2] = 15
score[3] = 20

Q15-7: To access an element in an array, you enter arrayName[index],
where arrayName is the array’s name, and index is an identifier, either a
number or a string, that identifies an element in the array.

Extra Resources Solutions 21

To help answer questions 8-14, the following statements create the
arr array and initialize the elements with the given numbers:

arr[1] = 2
arr[2] = -2
arr[3] = 8
arr[4] = -10
arr[5] = 3
arr[6] = 6

Q15-8: The results of these expressions are as follows:

a.	 –2

b.	 8

c.	 16

d.	 100

e.	 8

f.	 9

g.	 –7

h.	 –10

i.	 –2

j.	 2

Q15-9: The results of these expressions are as follows:

a.	 –16

b.	 6

c.	 3

d.	 8

e.	 –2

f.	 3

Q15-10: The following For loop assigns the number 5 to all elements
of arr:

For N = 1 To 6
 arr[N] = 5
EndFor

Q15-11: The following For loop displays all the values of arr on a single
line with commas between the numbers:

For N = 1 To 6
 TextWindow.Write(arr[N])
 If (N <> 6) Then
 TextWindow.Write(", ")
 EndIf

22 Extra Resources Solutions

EndFor
TextWindow.WriteLine("")

Q15-12: The following For loop displays every other element of arr:

For N = 2 To 6 Step 2
 TextWindow.WriteLine(arr[N])
EndFor

Q15-13: The following For loop displays the elements of arr in reverse
order:

For N = 6 To 1 Step -1
 TextWindow.WriteLine(arr[N])
EndFor

Q15-14: The following For loop copies the positive elements of arr into a
new array, posArr:

J = 1 ' Index into posArr
For N = 1 To 6
 If (arr[N] > 0) Then
 posArr[J] = arr[N]
 J = J + 1
 EndIf
EndFor

Q15-15: The following statement initializes the num array (we use a
string initializer):

num = "1=6;2=7;3=3;4=4;5=5;6=4;7=3;8=2;9=1;10=0;"

a.	 The following statement assigns the value 8 to the third element:

num[3] = 8

b.	 The following statements display the value of a randomly selected
element:

idx = Math.GetRandomNumber(10)
TextWindow.WriteLine(num[idx])

c.	 The following statements display the sum of the last two elements:

sum = num[9] + num[10]
TextWindow.WriteLine(sum)

Extra Resources Solutions 23

d.	 The following loop finds and displays the index of the maximum
element:

max = num[1] ' Assume the first element is max
maxIdx = 1 ' So the index of the max element is 1
For N = 2 To 10
 If (num[N] > max) Then ' We have a new max
 max = num[N]
 maxIdx = N
 EndIf
EndFor
TextWindow.Write("The max number (" + max + ") ")
TextWindow.WriteLine("is at index " + maxIdx + ".")
TextWindow.WriteLine("")

e.	 The following loop finds and displays the sum of all the elements:

sum = 0
For N = 1 To 10
 sum = sum + num[N]
EndFor
TextWindow.WriteLine("The sum is " + sum + ".")

Q15-16: The program produces the following output:

Maple
Oak
Palm Tree

Q15-17: After running the program, arr2 will have the following
elements:

arr2[1] = 62
arr2[2] = 35
arr2[3] = 20
arr2[4] = 15
arr2[5] = 10

Q15-18: The error is that we use a variable named J as an index for the
array score. We should use N, instead.

Q15-19: The program mistakenly uses parentheses around the name
array. It should use square brackets instead. Here is the correct code:

For N = 1 To 5
 TextWindow.Write("Enter name # " + N + ": ")
 name[N] = TextWindow.Read()
EndFor

24 Extra Resources Solutions

' Displays in reverse order
For N = 5 To 1 Step -1
 TextWindow.WriteLine(name[N])
EndFor

Practice Exercises
P15-1: See the file Prob_15_1.sb.

P15-2: See the file Prob_15_2.sb.

P15-3: See the file Prob_15_3.sb.

P15-4: See the file Prob_15_4.sb.

P15-5: See the file Prob_15_5.sb.

P15-6: See the file Prob_15_6.sb.

P15-7: See the file Prob_15_7.sb.

P15-8: See the file Prob_15_8.sb.

P15-9: See the file Prob_15_9.sb.

P15-10: See the file Prob_15_10.sb.

P15-11: See the file Prob_15_11.sb.

P15-12: See the file Prob_15_12.sb.

P15-13: See the file Prob_15_13.sb.

P15-14: See the file Prob_15_14.sb.

P15-15: See the file Prob_15_15.sb.

Chapter 16

Review Questions
Q16-1: True

Q16-2: True

Q16-3: True

Q16-4: True

Q16-5: False

Q16-6: True

Q16-7: True

Extra Resources Solutions 25

Q16-8: True

Q16-9: False

Q16-10: False

Q16-11: The first statement displays 76. The second statement dis-
plays 127, and the third statement displays an empty string (because
"Invisible Woman" is not in the age array).

Q16-12: The GetAllIndices() method returns an array that has all the
indices of a given array. The first element of the returned array has an
index of 1.

Practice Exercises
P16-1: See the file Contractions.sb.

P16-2: See the file Prob_16_2.sb.

P16-3: See the file Prob_16_3.sb.

P16-4: See the file Prob_16_4.sb.

P16-5: See the file Prob_16_5.sb.

P16-6: See the file Prob_16_6.sb.

P16-7: See the file Prob_16_7.sb.

P16-8: See the file Prob_16_8.sb.

Chapter 17

Review Questions
Q17-1: You need 2 subscripts to access an element in a 2D array.

Q17-2: You need 3 subscripts to access an element in a 3D array.

Q17-3: A 4×5 matrix has 4 rows and 5 columns.

Q17-4: The expression score[3][4] returns the element in the 3rd row
and 4th column. The expression score[5][1] returns the element in the
5th row and 1st column.

Q17-5: False

Q17-6: To access the element in the fifth row and second column of the
mat matrix, you write mat[5][2].

Q17-7: The matrix has 2 rows and three columns. So, it is a 2×3 matrix.

26 Extra Resources Solutions

Practice Exercises
P17-1: See the file Prob_17_1.sb. Here is the program’s output:

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

P17-2: See the file Prob_17_2.sb. Here is the program’s output:

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

P17-3: See the file Prob_17_3.sb.

P17-4: See the file Prob_17_4.sb. The error is that the sum variable has to
be initialized to zero for each row. Here is the correct code:

For I = 1 To 4
 sum = 0
 For J = 1 To 4
 sum = sum + mat[I][J]
 EndFor
 TextWindow.WriteLine("Sum of row " + I + " = " + sum)
EndFor

P17-5: See the file Prob_17_5.sb.

P17-6: See the file Prob_17_6.sb.

P17-7: See the file Prob_17_7.sb.

P17-8: See the file Prob_17_8.sb.

P17-9: See the file Prob_17_9.sb.

P17-10: See the file Prob_17_10.sb.

P17-11: See the file LightsOut.sb in the folder Prob_17_11.

P17-12: See the file PennyPitch.sb in the folder Prob_17_12.

Chapter 18

Review Questions
Q18-1: The statement returns 12, because the string "Jack and Joe" has
12 characters.

Extra Resources Solutions 27

Q18-2: Text.Append() always glues its two arguments together, regardless
of whether the arguments are strings or numbers. The plus sign, on
the other hand, works as a concatenation operator only when one of its
operands can’t be interpreted as a number. When both operands can
be interpreted as numbers, the + sign does number addition instead of
concatenation.

Q18-3: The program displays the string "15".

Q18-4: It returns the string "even".

Q18-5: It returns "age".

Q18-6: The following statement returns a five-digit zip code that starts
at position 12 in a string named strAddress:

zipCode = Text.GetSubText(strAddress, 12, 5)

Q18-7: You use StartsWith() to find out if a string starts with a given
substring. You use EndsWith() to find out if a string ends with a given
substring.

Q18-8: The following loop displays every letter in a string named
strName:

For N = 1 To Text.GetLength(strName)
 ch = Text.GetSubText(strName, N, 1)
 TextWindow.WriteLine(ch)
EndFor

Q18-9: To get the uppercase version of a string, use the
ConvertToUpperCase() method of the Text object.

Q18-10: The variable right will contain "rnetic".

Q18-11: The following statements are performed on the input
string strIn.

a.	 The following statements display the first letter of strIn:

ch = Text.GetSubText(strIn, 1, 1)
TextWindow.WriteLine(ch)

b.	 The following statements display the last letter of strIn:

len = Text.GetLength(strIn)
ch = Text.GetSubText(strIn, len, 1)
TextWindow.WriteLine(ch)

c.	 The following statements display the first two letters of strIn:

ch = Text.GetSubText(strIn, 1, 2)
TextWindow.WriteLine(ch)

28 Extra Resources Solutions

d.	 The following statements display the last two letters of strIn:

len = Text.GetLength(strIn)
ch = Text.GetSubText(strIn, len - 1, 2)
TextWindow.WriteLine(ch)

e.	 The following statements extract the first N letters of strIn and
assign the result to a new string called strOut:

strOut = Text.GetSubText(strIn, 1, N)
TextWindow.WriteLine(strOut)

Q18-12: The following statements interchange the two letters of strIn
and assign the result to strOut:

ch1 = Text.GetSubText(strIn, 1, 1)
ch2 = Text.GetSubText(strIn, 2, 1)
strOut = Text.Append(ch2, ch1)

Q18-13: The following statements create a string, str3, that contains the
first three letters from str1 and the last three letters from str2:

sub1 = Text.GetSubText(str1, 1, 3)
sub2 = Text.GetSubText(str2, Text.GetLength(str2) - 2, 3)
str3 = Text.Append(sub1, sub2)

Q18-14: The GetCharacter() method returns the character that corre-
sponds to a given character code. The GetCharacterCode() method works
in the other direction; it returns the code for a given character.

Practice Exercises
Problem 18-1: See the file Prob_18_1.sb.

Problem 18-2: See the file Prob_18_2.sb.

Problem 18-3: See the file Prob_18_3.sb.

Problem 18-4: The program displays all the letters in the string ans
without the spaces.

Problem 18-5: Answers will vary.

Problem 18-6: See the file Prob_18_6.sb.

Problem 18-7: See the file Prob_18_7.sb.

Problem 18-8: See the file Prob_18_8.sb.

Problem 18-9: See the file Prob_18_9.sb.

Problem 18-10: See the file Prob_18_10.sb.

Extra Resources Solutions 29

Problem 18-11: The file Prob_18_11.sb explains how this is left as a chal-
lenge to the reader. See the file Prob_18_9.sb for ideas of how to code this.

Problem 18-12: This problem is left as a challenge for the reader.

Problem 18-13: See the file Prob_18_13.sb.

Problem 18-14: See the file Prob_18_14.sb. The program displays the let-
ters of a string one-by-one (in slow motion).

Problem 18-15: This problem is left as a challenge for the reader.

Problem 18-16: See the file Prob_18_16.sb.

Chapter 19

Review Questions
Q19-1: Data stored in files is called persistent data because it’s retained
even after you turn off your computer.

Q19-2: Containers that store files on a computer are called directories
or folders.

Q19-3: The filesystem is the part of the operating system that is respon-
sible for organizing files and directories on a computer and providing
ways to manage them.

Q19-4: To read all the contents of a file at once, you use the
ReadContents() method of the File object.

Q19-5: To save the contents of a string to a file, you use the
WriteContents() method of the File object.

Q19-6: A call to WriteContents() returns "SUCCESS" or "FAILED", based on
whether the operation was successful.

Q19-7: The WriteContents() method overwrites the contents of the out-
put file. The AppendContents() method, on the other hand, adds data to
the end of the file without erasing its original contents.

Q19-8: To read a single line of text from a file, you use the ReadLine()
method of the File object.

Q19-9: To save a single line of text to a file, you use the WriteLine()
method of the File object.

Q19-10: True. The WriteLine() method automatically adds a carriage
return and line feed at the end of a line.

Q19-11: The InsertLine() method lets you insert a line of text into a file
at a specified line number.

Q19-12: To create a copy of an existing file, you use the CopyFile()
method.

30 Extra Resources Solutions

Q19-13: To delete an existing file, you use the DeleteFile() method.

Q19-14: To create and delete directories, you use the CreateDirectory()
and the DeleteDirectory() methods, respectively.

Q19-15: The GetFiles() method returns a list of all the files in a direc-
tory. This method takes the path of the target directory as its argument.

Q19-16: The GetDirectories() method returns an array that contains the
pathnames of all the directories in the specified path.

Q19-17: The GetTemporaryFilePath() method creates a new temporary file
in a temporary directory and returns the full file path.

Practice Exercises
P19-1: If you open a binary file in Notepad, the file will look like
gibberish!

P19-2: See the file PhoneticSpelling.sb in the folder Prob_19_2.

P19-3: See the file Spelling.sb in the folder Prob_19_3.

P19-4: See the file OlympicRecords.sb in the folder Prob_19_4.

P19-5: This problem is left as a challenge for the reader.

P19-6: See the file Planets.sb in the folder Prob_19_6.

P19-7: See the file Battles.sb in the folder Prob_19_7.

P19-8: This is similar to the previous problem. It’s left as an exercise for
the reader.

P19-9: This is also similar to Practice Exercise 7. It’s left as an exercise
for the reader.

P19-10: This is also similar to Practice Exercise 7. It’s left as an exercise
for the reader.

	_GoBack

